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Background: The TimesBackground: The Times

- the great engineering achievement of the time
- understanding of “two-track” vehicle systems (buggys,

carts, & trains)
- completed on 10 May 1869 (Wilbur was two years old)

TranscontinentalTranscontinental
RailroadRailroad……



Background: ProgenitorsBackground: Progenitors

• Otto Lilienthal
- experiments from 1891 to 1896

• Samuel P Langley
- experiments from 1891-1903

• Octave Chanute
- experiments from 1896-1903



Otto Otto LilienthalLilienthal

• Glider experiments 1891 - 1896



Dr Samuel Pierpont LangleyDr Samuel Pierpont Langley

• Aerodrome experiments 1887-1903



Octave ChanuteOctave Chanute

• Gliding experiments 1896 to 1903



Wilbur and OrvilleWilbur and Orville

16 Apr 1867 16 Apr 1867 –– 30  May 1912 30  May 1912 19 Aug 1871 19 Aug 1871 –– 30 Jan 1948 30 Jan 1948



Wright Brothers TimelineWright Brothers Timeline
• 1878 The Wrights receive a gift of a toy helicopterhelicopter
• 1895 The Wrights begin to manufacture their own bicycles
• 1896 The Wrights take an interest in the "flying problem"
• 1899 Wilbur devises a revolutionary control system, 

  builds a kitekite to test it; also writes the Smithsonian.
• 1900 The Wright brothers fly a gliderglider at Kitty Hawk, NC
• 1901 The Wrights fly a bigger gliderglider at Kitty Hawk, NC
• 1901 In Dayton, OH, they build a research wind tunnelwind tunnel
• 1902 The Wrights perfect their gliderglider and learn to fly
• 1903 The Wright brothers make the first controlled,  

  sustained powered flightpowered flight at Kitty Hawk.
• 1905 In Dayton, the Wrights develop a practical airplanepractical airplane



Wright BrothersWright Brothers’’ Paper Paper

Dayton’s “West Side News”



Wright BrothersWright Brothers’’ Cycle Company Cycle Company

• “single-track” vehicle mechanics



                                Inspiration: 1878                                Inspiration: 1878



Inspiration: July 1899Inspiration: July 1899



1899 Kite Experiments1899 Kite Experiments
Dayton OhioDayton Ohio



1900 Wright Glider1900 Wright Glider
• Span: 17  feet
• Chord: 5 feet
• Gap:  4 feet, 8 inches
• Camber: 1/23
• Wing Area: 165 sq ft
• Weight with operator

190 lb



1901 Wright Glider1901 Wright Glider
• Span: 22  feet
• Chord: 7 feet
• Gap:  4 feet, 8 inches
• Camber: 1/17
• Wing Area: 290 sq ft
• Horizontal Rudder Area

18 sq ft
• Length 14 feet
• Weight 98 lb



They go home, very discouraged.They go home, very discouraged.

On the train back to Dayton,
Wilbur tells Orville that men would

not fly for another fifty years...



Dayton ExperimentsDayton Experiments
 October 1901 October 1901



1901 Wind Tunnel1901 Wind Tunnel
16 inch square section x 6 feet16 inch square section x 6 feet



1901 Wright Wind Tunnel Results1901 Wright Wind Tunnel Results



1902 Wright Glider1902 Wright Glider



1902 Wright Glider1902 Wright Glider
• Span: 32  feet 1 inch
• Chord: 5 feet
• Gap:  4 feet, 7 inches
• Camber 1/24
• Wing Area: 305 sq ft
• Horizontal Rudder  Area

15 sq ft
• Length 16 feet 1 inch
• Weight 112 lb
• Three configurations



1902 Wright Glider1902 Wright Glider



Centennial of Controlled FlightCentennial of Controlled Flight
24 October 190224 October 1902



1903 Langley Aerodrome1903 Langley Aerodrome

Oct 7, 1903Oct 7, 1903
Dec 8, 1903Dec 8, 1903



1903 Wright Flyer1903 Wright Flyer



1903 Wright Flyer1903 Wright Flyer
• Span: 40  feet 4 inch
• Chord: 6 feet 6 inches
• Gap:  6 feet 2 inches
• Camber 1/20
• Wing Area: 510 sq ft
• Horizontal Rudder  Area

48 sq ft
• Vertical Rudder  21 sq ft
• Length 21 feet 1 inch
• Weight 605 lb



1903 Wright Flyer1903 Wright Flyer
December 14, 1903December 14, 1903

Wilbur wins the coin toss, andWilbur wins the coin toss, and……



1903 Wright Flyer1903 Wright Flyer
December 14, 1903December 14, 1903

Oops!Oops!



1903 Wright Flyer1903 Wright Flyer
December 17, 1903December 17, 1903



1903 Wright Flyer1903 Wright Flyer



They tell the world...They tell the world...



1904 Wright Flyer1904 Wright Flyer



1904 Huffman Prairie Ohio1904 Huffman Prairie Ohio
September 20, 1904 First Complete Circle in an AirplaneSeptember 20, 1904 First Complete Circle in an Airplane



1905 Wright Flyer1905 Wright Flyer



1905 Huffman Prairie OH1905 Huffman Prairie OH
Oct 4, 1905 Extended Flight in an  Airplane (38 minutes)Oct 4, 1905 Extended Flight in an  Airplane (38 minutes)



Wright Flying Machine PatentWright Flying Machine Patent
#821, 393#821, 393

May 22, 1906May 22, 1906



1908-19091908-1909  France & VirginiaFrance & Virginia
Public trials of the first practical airplanePublic trials of the first practical airplane



The Rest is History...The Rest is History...

• 1904 Flights of 5+ minutes duration
• 1905 Flights to 38 minutes duration
• 1906 - 1907 Commercialization
• 1908 - 1909 Flight Demonstrations

– Wilbur in France, Italy and Germany
– Orville in United States

• 1909 The Wright Company is established
– Clarke-Wright glider in England
– Established Flying School in Alabama, OH

• 1911 Glider Experiments with autopilot
• Orville serves on NACA board from 1920 to 1948

NACA Board, 1938NACA Board, 1938



Understanding the Wright’s Accomplishments
Through Evaluation



Wright Flyers Today

1903 Wright Flyer I1903 Wright Flyer I
National Air & Space MuseumNational Air & Space Museum

1905 Wright Flyer III1905 Wright Flyer III
Carillon HallCarillon Hall





Orville’s Camera: 1902 to 1905



The Wrights to Today

• We still solve problems the same as the
Wrights today

• We reduce the system to individual
problems
- aero
- controls
- propulsion
- structures



How Did We Get Here?
• What are our assumptions?
• What are we missing?



An Integrated Approach:
Towards More Bird-like Flight

• The Wrights dis-integrated the bird
• It is time to re-integrate the bird

“When was the last time you saw
a bird with a vertical tail?”



Birds



Bird Flight as a Model
or “Why don’t birds have

vertical tails?”
• Propulsion

Flapping motion to produce thrust
Wings also provide lift
Dynamic lift - birds use this all the time (easy for them, hard for us)

• Stability and Control
Still not understood in literature
Lack of vertical surfaces

• Birds as an Integrated System
Structure
Propulsion
Lift (performance)
Stability and control

Dynamic Lift



Early Mechanical Flight

• Otto & Gustav  Lilienthal (1891-1896)

• Octave Chanute (1896-1903)

• Samuel P Langley (1896-1903)

• Wilbur & Orville Wright (1899-1905)



Spanload Development
• Ludwig Prandtl

Development of the boundary layer concept (1903)
Developed the “lifting line” theory
Developed the concept of induced drag
Calculated the spanload for minimum induced drag (1908?)
Published in open literature (1920)

• Albert Betz
Published calculation of induced drag
Published optimum spanload for minimum induced drag (1914)
Credited all to Prandtl (circa 1908)



Spanload Development
(continued)

• Max Munk
General solution to multiple airfoils
Referred to as the “stagger biplane theorem” (1920)
Munk worked for NACA Langley from 1920 through 1926

• Prandtl (again!)
“The Minimum Induced Drag of Wings” (1932)
Introduction of new constraint to spanload
Considers the bending moment as well as the lift and induced drag



Practical Spanload Developments
• Reimar Horten (1945)

Use of Prandtl’s latest spanload work in sailplanes & aircraft
Discovery of induced thrust at wingtips
Discovery of flight mechanics implications
Use of the term “bell shaped” spanload

• Robert T Jones
Spanload for minimum induced drag and wing root bending moment
Application of wing root bending moment is less general than Prandtl’s
No prior knowledge of Prandtl’s work, entirely independent (1950)

• Armin Klein & Sathy Viswanathan
Minimum induced drag for given structural weight (1975)
Includes bending moment
Includes shear



Prandtl Lifting Line Theory

• Prandtl’s “vortex ribbons”

• Elliptical spanload (1914)

• “the downwash produced by the
longitudinal vortices must be uniform at
all points on the aerofoils in order that
there may be a minimum of drag for a
given total lift.”  y = c



Elliptical Half-Lemniscate
• Minimum induced drag for given control

power (roll)
• Dr Richard Eppler: FS-24 Phoenix



Elliptical Spanloads



Minimum Induced Drag & Bending Moment

• Prandtl (1932)
Constrain minimum induced drag
Constrain bending moment
22% increase in span with 11% decrease in induced drag



Horten Applies Prandtl’s Theory

• Horten Spanload (1940-1955)
induced thrust at tips
wing root bending moment

Horten Sailplanes



Jones Spanload

• Minimize induced drag (1950)
Constrain wing root bending moment
30% increase in span with 17% decrease in induced drag

• “Hence, for a minimum induced drag with a given total
lift and a given bending moment the downwash must
show a linear variation along the span.”  y = bx + c



Klein and Viswanathan

• Minimize induced drag (1975)
Constrain bending moment
Constrain shear stress
16% increase in span with 7% decrease in induced drag

• “Hence the required downwash-distribution is
parabolic.” y = ax   + bx + c

2



Winglets
• Richard Whitcomb’s Winglets

- induced thrust on wingtips
- induced drag decrease is about

half of the span “extension”
- reduced wing root bending stress



Winglet Aircraft



Spanload Summary
• Prandtl/Munk (1914)

Elliptical
Constrained only by span and lift
Downwash: y = c

• Prandtl/Horten/Jones (1932)
Bell shaped
Constrained by lift and bending moment
Downwash: y = bx + c

• Klein/Viswanathan (1975)
Modified bell shape
Constrained by lift, moment and shear (minimum structure)
Downwash: y = ax   + bx + c

• Whitcomb (1975)
Winglets

• Summarized by Jones (1979)

2



Early Horten Sailplanes (Germany)

• Horten I - 12m span
• Horten II - 16m span
• Horten III - 20m span



Horten Sailplanes (Germany)
• H IV - 20m span
• H VI - 24m span



Horten Sailplanes (Argentina)
• H I b/c - 12m span
• H XV a/b/c - 18m span



Later Horten Sailplanes (Argentina)

• H Xa/b/c
7.5m,
10m, &
15m



Bird Flight Model
• Minimum Structure
• Flight Mechanics Implications
• Empirical evidence
• How do birds fly?



Calculation Method

• Taper
• Twist
• Control Surface Deflections
• Central Difference Angle



Dr Edward Udens’ Results
• Spanload and Induced Drag
• Elevon Configurations
• Induced Yawing Moments

Elevon Config   Cn∂ a   Spanload
I                  -.002070     bell
II                  .001556     bell
III                 .002788     bell
IV                -.019060  elliptical
V                 -.015730  elliptical
VI                 .001942     bell
VII                .002823     bell
VIII               .004529     bell
IX                 .005408     bell
X                  .004132     bell
XI                 .005455     bell



Horten H Xc Wing Analysis
• Vortex Lattice Analysis
• Spanloads (longitudinal & lateral-directional) - trim & asymmetrical roll
• Proverse/Adverse Induced Yawing Moments

handling qualities
• Force Vectors on Tips - twist, elevon deflections, & upwash
• 320 Panels: 40 spanwise & 8 chordwise



Symmetrical Spanloads
• Elevon Trim
• CG Location



Asymmetrical Spanloads

• Cl∂ a  (roll due to aileron)
• Cn∂ a  (yaw due to aileron)

induced component
profile component
change with lift

• Cn∂ a/Cl∂ a
• CL(Lift Coefficient)

Increased lift:
 increased Clβ
increased Cnβ*
Decreased lift:
 decreased Clβ
decreased Cnβ*



Airfoil and Wing Analysis

• Profile code (Dr Richard Eppler)
• Flap Option (elevon deflections)
• Matched Local  Lift Coefficients
• Profile Drag
• Integrated Lift Coefficients

match Profile results to Vortex Lattice
separation differences in lift

• Combined in MatLab



Performance Comparison
• Max L/D: 31.9
• Min sink: 89.1 fpm
• Does not include pilot drag

• Prediicted L/D: 30
• Predicted sink: 90 fpm



Horten Spanload Equivalent to Birds

• Horten spanload is equivalent to bird span
load (shear not considered in Horten designs)

• Flight mechanics are the same - turn
components are the same

• Both attempt to use minimum structure
• Both solve minimum drag, turn performance,

and optimal structure with one solution



Dynamic Lift: Flapping Wings

• What is the mechanism for flapping flight?
- dynamic lift
- start-up vortex
- Strouhal number



Dynamic Lift

• Riddle of the bumblebee

• Dynamic lift or delayed stall
- transient lift coefficient in excess of
steady-state maximum lift coefficient



Start-Up Vortex

• Back to Prandtl’s lifting-line theory
- conservation of momentum (angular)



Start-Up Vortex

• Rowing

• Paddling

• Sailing

• Swimming



Karman Vortex Street
• Oscillating vortex shedding



Strouhal Number

• Nondimensional measure of vortex
shedding frequency



Strouhal
• Governs ALL biological

periodic propulsion
- bacteria
- birds
- fish
- whales



Concluding Remarks
• Birds as as the first model for flight, and maybe the ultimate model?
• Theoretical developments independent of applications
• Applied approach gave immediate solutions, departure from bird flight
• Eventual meeting of theory and applications (applied theory)
• Spanload evolution (Prandtl/Munk, Prandtl/Horten/Jones, Klein &

Viswanathan)
• Flight mechanics implications
• Hortens are equivalent to birds
• Flapping is important, but how much?

• Thanks: Dr FK Yuan, Chris , Moussain Mousavi, Nalin Ratenyake, Kia
Davidson, Walter Horten, Georgy Dez-Falvy, Bruce Carmichael, R.T. Jones,
Russ Lee, Geoff Steele, Dan & Jan Armstrong, Dr Phil Burgers, Ed Lockhart,
Andy Kesckes, Dr Paul MacCready, Reinhold Stadler, Edward Udens, Dr Karl
Nickel & Jack Lambie
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What are we still missing?
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